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Abstract. We investigate the thermodynamic properties of Heisenberg ferrimagnetic mixed-
spin chains both numerically and analytically with particular emphasis on the combination of
ferromagnetic and antiferromagnetic features. Employing a new density-matrix renormalization-
group technique as well as a quantum Monte Carlo method, we reveal the overall thermal
behaviour: at very low temperatures, the specific heat and the magnetic susceptibility multiplied
by the temperature behave likeT 1/2 andT −1, respectively, whereas at intermediate temperatures,
they exhibit a Schottky-like peak and a minimum, respectively. Developing the modified spin-
wave theory, we complement the numerical findings and give precise estimates for the low-
temperature behaviour.

1. Introduction

Low-dimensional quantum magnets with two kinds of antiferromagnetically exchange-
coupled centre have been attracting much interest recently. Several authors [1–4] con-
structed integrable Hamiltonians and extracted suggestive critical phenomena from them.
Alternating-spin antiferromagnets with singlet ground states have stimulated us to study
the nontrivial gap problem again [5]. Employing the nonlinear-σ -model technique, various
mixed-spin systems such as linear chains [6, 7] and ladders [8] have been systematically
studied with particular emphasis on the competition between massive and massless phases.

In this area, a remarkable level of attention has quite recently been directed
towards ferrimagnetic mixed-spin chains [9–19], which are the subject of the present
article. In fact, pioneering attempts [20] to study Heisenberg ferrimagnets had already
been made experimentally in the 1980s in conjunction with theoretical investigations.
Kahn et al [21] made extensive chemical explorations into the families of compounds
ACu(pba)(H2O)3·nH2O and ACu(pbaOH)(H2O)3·nH2O, where A= Mn, Fe, Co, Ni, Zn,
pba= 1, 3-propylenebis(oxamato), and pbaOH= 2-hydroxy-1, 3-propylenebis(oxamato).
However, the ferrimagnetism itself may not have been their main focus of interest; but
they took great interest in the design of a molecule-based ferromagnet. While Drillon
et al [22] performed a systematic exact-diagonalization study of mixed-spin chains, the
chain lengths that they treated were not large enough to provide a basis for discussing
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the universal quantum ferrimagnetic behaviour, especially at low temperatures. The
recent renewal of interest in ferrimagnetic spin chains has led to a second wave of
explorations—not only in the theoretical field [9–19] but also in the experimental one
[23, 24]. Hagiwaraet al have performed susceptibility measurements on a bimetallic chain
compound, NiCu(pba)(D2O)3·2D2O, and succeeded in obtaining fundamental parameters of
the sample. In an attempt to make a significant advance towards solving this challenging
problem and in order to further stimulate experimental interest, we give here an extensive
argument regarding the thermal behaviour of Heisenberg ferrimagnetic spin chains.

Since we may expect gapless excitations from magnetic ground states, we are less
interested in whether the system is massless or massive. Using a field-theoretical argument,
Alcaraz and Malvezzi [9] predicted that mixed-spin isotropic Heisenberg ferrimagnets
should exhibit quadratic dispersion relations. Their prediction was numerically verified,
and the quadratic dispersion was explicitly illustrated [14]. Thus, quantum ferrimagnets are
expected to behave like ferromagnets at low temperatures. On the other hand, conventional
spin-wave calculations [10, 12] and a perturbation approach [14] with respect to bond
alternation suggest that quantum ferrimagnets should exhibit nontrivial gapped excitations
as well, which have the effect of enhancing the ground-state magnetization and are therefore
of antiferromagnetic nature. A quantum Monte Carlo (QMC) technique and an exact-
diagonalization method [14] actually indicated two distinct low-lying excitations and showed
that the mixed nature remains unchanged as long as the model is isotropic.

Motivated by the revealed low-energy structure, two of the present authors [17]
investigated the thermodynamic properties of Heisenberg ferrimagnetic spin chains, focusing
on the idea of coexisting ferromagnetic and antiferromagnetic aspects. Although they
introduced a modified spin-wave (MSW) theory as well as a QMC method, the quantitative
description of thermal quantities given was not successful, especially at low temperatures.
In order to enquire further into the low-temperature behaviour, we employ here additional
numerical tools. A quantum transfer-matrix (QTM) method allows us to observe how
the ferromagnetic character increases in dominance with the increase of the system size.
A brand-new density-matrix renormalization-group (DMRG) technique helps us to extend
the investigation into the low-temperature region, which has never been achieved before.
Furthermore, taking account certain interactions between spin waves, we refine the MSW
theory so as to produce a more accurate description of the thermal quantities at low
temperatures. Although it is rather hard, even with interacting spin waves, to obtain a
quantitative description of the overall thermal behaviour, a grand-canonical approach to
ferrimagnets in terms of spin waves is suggestive, and is interesting in itself. We give a
full argument regarding how the conventional spin-wave theory should bemodifiedwhen
attempting to construct the thermodynamics of quantum ferrimagnets.

We consider two kinds of spin,S and s, alternating on a ring with antiferromagnetic
exchange coupling between nearest neighbours, as described by the Hamiltonian

H = J
N∑
j=1

(Sj · sj + δsj · Sj+1)− gµBH

N∑
j=1

(Szj + szj ) (1)

whereN denotes the number of unit cells,δ represents a bond alternation,µB is the Bohr
magneton, and we have set theg-factors of spinsS and s both equal tog. We assume
thatS > s, which remains general enough for describing alternating-spin ferrimagnets. The
Lieb–Mattis theorem [25] shows that the Hamiltonian (1), unless a field is applied, has
[2(S−s)N+1]-fold degenerate ground states. The ferromagnetic and the antiferromagnetic
excitations, which lie in the subspacesM < (S − s)N andM > (S − s)N , respectively, do
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indeed show a quadratic dispersion and a gapped spectrum [14], where

M =
N∑
j=1

(Szj + szj )

is the total magnetization. The antiferromagnetic gap—that is, the gap between the ground
state and the lowest excitation toM = (S− s)N +1—was estimated to be 1.759 14(1) J in
the thermodynamic limit. The correlation length of the system is so small that it is barely
as long as the unit cell [10, 12] even at the Heisenberg pointδ = 1.

2. Numerical study

In this section, using several numerical tools, we calculate the specific heat and the
magnetic susceptibility at zero field. The spin-wave [10, 12] and the perturbation [14]
calculations suggest that the low-temperature properties of the model are qualitatively the
same regardless of the values ofS and s as long as they differ from each other. Alcaraz
and Malvezzi [9] performed finite-size calculations combined with a scaling analysis in the
cases of(S, s) = (1, 1/2) and (S, s) = (3/2, 1/2) and indeed concluded that quadratic
dispersion relations should be expected for arbitrary isotropic mixed-spin chains showing
ferrimagnetism instead of antiferromagnetism. Thus we restrict our numerical investigations
to the case of(S, s) = (1, 1/2).

2.1. Procedure

We employ the QMC method based on the Suzuki–Trotter decomposition [26] of the
chequerboard type [27]. The partition functionZ = Tr[e−βH] is approximately decomposed
as

Z '
[( ∏

i=1,3,...

e−βhi/n
∏

i=2,4,...

e−βhi/n
)n]

(2)

wheren is a Trotter number,β = (kBT )
−1 with the Boltzmann constantkB, and

h2j−1 = JSj · sj − 1

2
gµBH(S

z
j + szj )

h2j = Jδsj · Sj+1− 1

2
gµBH(s

z
j + Szj+1).

(3)

In order to accelerate the thermodynamic calculation and refine its accuracy, we make use of
the improved algorithm given in reference [28]. Calculations are carried out at several values
of n andN , and they are extrapolated to the limitsn → ∞ andN → ∞. Although we
have treated chains ofN = 24,N = 32, andN = 48, the size dependence of the thermal
quantities is so weak that we find no difference beyond the numerical uncertainty even
between the calculations atN = 24 and those atN = 32 except for very low temperatures.
Both the specific heatC and the magnetic susceptibilityχ are directly evaluated [29] in a
QMC sampling.

If we replace the trace by an importance sampling, it is hardly feasible to take grand-
canonical averages at very low temperatures. In an attempt to avoid this difficulty, we
may integrate out [30, 31] the(1+ 1)-dimensional Ising system, but then we have to give
up either low temperatures or long chains. We can in principle reach an arbitrary low
temperature at the expense of an increase in the system size and such an attempt is to a
certain extent fruitful for the present system whose correlation length is very small. In fact,
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constructing transfer matrices in the chain direction, we will later show QTM calculations
of the specific heat. Although the QTM calculations themselves are so accurate that they
can be regarded as exact, differentiating them numerically may introduce errors. Here we
directly calculate the internal energy, rather than the partition function, and differentiate it
numerically once. We keep the final results highly accurate by taking raw data at regular
intervals ofkBT/J = 0.01.

On the other hand, constructing transfer matrices in the Trotter direction, we can partly
reveal the thermal behaviour of an infinite chain [32]. However, the exponential growth of
the matrix size with the increase ofn makes access to low temperatures unfeasible. In order
to overcome this difficulty, we introduce the DMRG technique into our investigations. On
the basis of White’s original idea [33] developed atT = 0, we apply it to the renormalization
of transfer matrices [34, 35] instead of Hamiltonians. This extension of the DMRG method
has recently been applied to the thermodynamics of several low-dimensional magnets [36–
38] and indeed produced plenty of results for us at very low temperatures.

The core idea of the so-called transfer-matrix DMRG method can be summarized as
reaching largen by reducing the size of the transfer matrix with the use of the DMRG
algorithm. We introduce a step widthβ0 and extend the investigation successively down to
lower temperaturesβ−1 = (nβ0)

−1, increasingn linearly. In order to avoid the exponential
growth of the matrix size, we keep the number of states in the density matrix constant
at a predetermined numberm throughout the calculation. Obviously the two controllable
parametersβ0 andm determine the precision of the transfer-matrix DMRG calculation. The
Trotter decomposition is refined asβ0 → 0, whereas the loss of information is reduced as
m→∞. At high temperatures, we are compelled to work with small Trotter numbers, while
few states are discarded. At low temperatures, the Trotter numbers are large enough, whereas
many states are lost due to the large number of iterations. Thus, the convergence of the
calculation predominantly depends onβ0 at high temperatures, while it depends onm at low
temperatures, as was actually observed [38]. As we have conclusive QMC results at high and
intermediate temperatures, we are particularly interested in low-temperature findings from
the transfer-matrix DMRG calculation. We therefore invest our computational resources
mainly in augmentingm. Settingβ0J andm to 0.2 and 128, respectively, we have found
that at intermediate temperatures the specific heat is somewhat overestimated, whereas at
low temperatures the precision almost reaches three digits. Calculations atm = 80,m = 96,
andm = 128 fully converge atT & 0.05, and almost converge at 0.04. T . 0.05. We
were not able to extend the investigation to lower temperatures successfully. This is mainly
due to the macroscopically degenerate ground states of ferrimagnets, for which a huge
number of states must be retained in our access to theT → 0 limit.

2.2. Results

We show in figure 1 the temperature dependence of the specific heat of the(S, s) = (1, 1/2)
Heisenberg ferrimagnetic spin chain. We find in figure 1(a) a good agreement between the
QMC and DMRG calculations. At intermediate temperatures, the specific heat exhibits a
Schottky-like anomaly typical of antiferromagnets. Let us consider the model atδ = 0 in
an attempt to clarify the origin of this characteristic peak. Now the model is decoupled into
dimers and the specific heat per unit cell is simply obtained from an isolated dimer, which
is a pure two-level system with doubly degenerate ground states and fourfold-degenerate
excited states separated above by an energy gap1 = 3J/2. The specific heat is given by

C

NkB
= r(β1)2eβ1

(eβ1 + r)2 (4)
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Figure 1. The temperature dependence of the specific heat per unit cell: (a) QMC findings
(©) and DMRG results (×) for N →∞. The dotted line represents the Schottky-type specific
heat (2.9). The numerical uncertainty is smaller than the symbol size. (b) QTM calculations
for various values ofN , where we show theN → ∞ curve as well, which is obtained by
interconnecting the QMC findings forkBT/J > 0.4 and the DMRG results forkBT/J 6 0.4.

where r is the ratio of the degeneracy of the excited states to that of the ground states.
Moving away from the decoupled-dimer point, the low-lying states begin to exhibit
dispersion and macroscopic degeneracy. At the Heisenberg pointδ = 1, for N elementary
cells, the ground state is(N + 1)-fold degenerate, whereas the lowest antiferromagnetic
excited state is(N + 3)-fold degenerate [25]. We note that the isolated dimer may be
regarded as the Heisenberg chain withN = 1. Now we make an attempt to fit the
intermediate-temperature behaviour to the curve (4), allowing only a single additional
adjustable parameterA:

C

NkB
= Ar(β1)2eβ1

(eβ1 + r)2 . (5)

Here we replacer and1 by their values at the Heisenberg point, the degeneracy ratio of
the lowest antiferromagnetic excited states to the ground states and the gap between them,
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respectively:

r = lim
N→∞

N + 3

N + 1
= 1 1 = 1.759J. (6)

We obtain a good fit withA = 1.7, which is also shown in figure 1(a). We stress that
the Schottky-type specific heat (5) not only fits the peak but also describes well the high-
temperature decay. Equation (5) combined with the condition (6) gives an asymptotic
high-temperature behaviour 1.3(βJ )2, which agrees well with the high-temperature series-
expansion result(βJ )2 [17]. Thus we find that the temperature dependence of the specific
heat straightforwardly reflects the antiferromagnetic gap, and therefore the model can be
treated well as a two-level system unless it is at low enough temperatureskBT � 1 '
1.759J .

Figure 2. Schematic representations of theM = N/2 ground state of theN = 1 isolated
dimer composed of spin 1 and spin 1/2 and its ferromagnetic (b) and antiferromagnetic (c)
excitations. The arrow (the bullet symbol) denotes a spin 1/2 with its fixed (unfixed) projection
value. The solid (broken) segment is a singlet (triplet) pair. The circle represents an operation
of constructing a spin 1 by symmetrizing the twos = 1/2 spins inside.

On the other hand, the DMRG results fully allow us to guess the asymptoticT 1/2-
behaviour characteristic of ferromagnets. This ferromagnetic feature becomes more
pronounced as we move toward the Heisenberg point from the decoupled-dimer limit or
alternatively as the system size increases. With this in mind, we observe the chain-length
dependence of the specific heat in figure 1(b). The naive QTM method is quite useful for
short chains at low temperatures. We find that the antiferromagnetic feature is fairly well
established even in short chains, whereas the increase in ferromagnetism is relatively slow.
The elementary excitations of ferromagnetic nature are predominantly related tos = 1 spins,
while those of antiferromagnetic nature originate from interactions between the two kinds
of spin [14]. These excitations may be identified with the local ones within a unit cell in
the vicinity of the decoupled-dimer limit, as shown in figure 2. Figure 1(b) suggests that
the delocalization effect is more essential to the appearance of the ferromagnetic feature.
In fact, the ferromagnetic excitations constitute a wider band than the antiferromagnetic
ones [14].

We show in figure 3 the temperature dependence of the magnetic susceptibility multiplied
by temperature for the(S, s) = (1, 1/2) Heisenberg ferrimagnetic spin chain. We find again
that the QMC and DMRG calculations are in excellent agreement. The productχT diverges
as T −1 at low temperatures, while it approaches [S(S + 1) + s(s + 1)]/3 = 11/12 at
high temperatures. The low-temperature divergence is reminiscent of the ferromagnetic
susceptibility [41]. We further note thatχT shows a minimum at the shift from the
quantum ferromagnetic behaviour to the classical paramagnetic behaviour. GenerallyχT is
a monotonically decreasing function for ferromagnets, while it is a monotonically increasing
function for antiferromagnets [39]. The susceptibilities of gapped antiferromagnets such as
Haldane systems vanish exponentially [28, 29, 40]. Hence the temperature dependence that
we are observing may be regarded as a ferromagnetic-to-antiferromagnetic crossover. In
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Figure 3. The temperature dependence of the magnetic susceptibility multiplied by the
temperature per unit cell: QMC findings (©) and DMRG results (×) for N → ∞. The
numerical uncertainty is smaller than the symbol size.

fact, the minimum ofχT appears at a temperature around which the specific heat shows
the Schottky-like peak.

To summarize, it has been demonstrated that ferrimagnets exhibit a combination of
ferromagnetic and antiferromagnetic features. The DMRG technique has allowed us to
have access to very low temperatures. In an attempt to extend the investigation to even
lower temperatures, we develop the MSW theory for ferrimagnets [17] in the next section.
We not only aim at obtaining a precise description of the low-temperature behaviour but
also are interested in describing the overall thermal behaviour on the basis of the spin-wave
picture.

3. The modified spin-wave approach

For years, the conventional spin-wave theory [42–44] was plagued by the difficulty that
the zero-field magnetization diverges for low-dimensional magnets. The low-temperature
series expansion within the theory only produces the leading term of the specific heat and
nothing correct for the susceptibility. However, imposing a constraint on the magnetization,
Takahashi [45, 46] succeeded in describing the low-temperature thermodynamics of low-
dimensional ferromagnets. His idea was further applied to several quantum antiferromagnets
[47–50] and its wide applicability was established. Recently two of the present authors
[17] introduced this modified spin-wave theory into the study of quantum ferrimagnets and
demonstrated that it is quite useful for understanding their characteristic features. Here we
develop our argument, taking into account interactions between spin waves.

3.1. Dispersion relations

We have observed that the low-temperature thermodynamics well reflects the dispersion
relation of the ferromagnetic branch, whereas the intermediate-temperature behaviour is
suitably attributed to that of the gapped antiferromagnetic branch. This scenario is
indeed supported by the MSW theory [17]. A combination of the ferromagnetic and
antiferromagnetic spin waves on which a particular constraint is imposed reproduces the
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initial T 1/2-behaviour, the Schottky-like peak, and theT −2-decay of the specific heat, and
theT −2-divergence and theT −1-decay of the susceptibility (see figure 5 and figure 6 later).
However, we should recall that the conventional spin-wave calculation, based on which we
started our first attempt [17] to construct the thermodynamics, considerably underestimates
the antiferromagnetic gap1. Consequently, the MSW approach succeeds in reproducing
the Schottky anomaly itself, to be sure, but fails in locating it at a correct temperature. In
order to obtain a better description, we first refine the original spin-wave theory.

Let us introduce bosonic operators through the Holstein–Primakoff transformation [42]:

S+j = (2S − a†j aj )1/2aj Szj = S − a†j aj
s+j = b†j (2s − b†j bj )1/2 szj = −s + b†j bj

(7)

where we regardS and s as quantities of the same order, that is, O(S) = O(s). The
Hamiltonian (1) withδ = 1 andH = 0 is expressed in terms of the bosonic operators as

H = Eclass+H0+H1+O(S−1) (8)

where

Eclass= −2sSJN (9)

H0 = J
∑
j

{
2sa†j aj + 2Sb†j bj +

√
sS
[
(aj + aj+1)bj + HC

]}
(10)

H1 = −J
∑
j

{
1

4

[√
S/s(aj + aj+1)b

†
j b

2
j +

√
s/Sa

†
j a

2
j (bj + bj−1)+ HC

]
+ (a†j aj + a†j+1aj+1)b

†
j bn

}
. (11)

The treatment of the quartic interaction (11) is not as canonical as that of the quadratic
Hamiltonian (10). A variety of approaches are possible [18]. Here, in an attempt to obtain
the dispersion relations beyond the noninteracting spin-wave theory, we first diagonalize
H0 and next extract corrections fromH1.

The Bogoliubov transformation

αk = (coshθk)ak + (sinhθk)b
†
k

βk = (sinhθk)a
†
k + (coshθk)bk

(12)

combined with

ak = 1√
N

∑
j

eik(j−1/4)aj

bk = 1√
N

∑
j

e−ik(j+1/4)bj

(13)

and

tanh 2θk = −2
√
Ss

S + s cos

(
k

2

)
(14)

diagonalizesH0 as [10, 12]

H0 = E0+ J
∑
k

(ω−k α
†
kαk + ω+k β†kβk) (15)
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where we have taken twice the lattice constant as unity. The first term in (15) is the O(S1)

quantum correction to the ground-state energy,

E0 = J
∑
k

[ωk − (S + s)] (16)

with

ωk =
√
(S − s)2+ 4Ss sin2(k/2). (17)

The following O(S1) terms are the ferromagnetic and antiferromagnetic spin-wave modes,
whose dispersion relations are, respectively, given by

ω∓k = ωk ∓ (S − s). (18)

The lower-energy mode shows a quadratic dispersion relation at small values ofk, which
is consistent with the initialT 1/2-behaviour of the specific heat. On the other hand, the
gap between the two branches is exactlyJ , which considerably contradicts the numerical
estimate of 1.759J .

Now we pick up relevant contributions to the dispersions, as well as to the ground-state
energy, fromH1. Employing the Wick theorem, we rewriteH1 as

H1 = E1− J
∑
k

(δω−k α
†
kαk + δω+k β†kβk)+Hirrel +Hquart (19)

whereHirrel contains irrelevant terms such asαkβk andHquart contains residual two-body
interactions, both of which are neglected in the following. The O(S0) correction to the
ground-state energy,E1, and those to the dispersions,δω±k , are, respectively, given by

E1 = −2JN [02
1 + 02

2 + (
√
S/s +

√
s/S)0102] (20)

δω±k = 2(S + s)01
sin2(k/2)

ωk
+ 02√

Ss
[ωk ± (S − s)] (21)

with

01 = 1

2N

∑
k

(cosh 2θk − 1)

02 = 1

2N

∑
k

cos

(
k

2

)
sinh 2θk.

(22)

In the thermodynamic limit, the key constants01 and02 with (S, s) = (1, 1/2) are estimated
to be 0.304 887 and−0.337 779, respectively. Up to O(S0), we end up with the Hamiltonian

H ' Eg+ J
∑
k

(ω̃−k α
†
kαk + ω̃+k β†kβk) (23)

where

ω̃±k = ω±k − δω±k (24)

Eg = Eclass+ E0+ E1. (25)

In figure 4 we plotω̃±k andω±k as functions ofk at (S, s) = (1, 1/2) with the previous
numerical estimates [14] for finite chains. We find that the antiferromagnetic mode is now
improved to a great extent. Furthermore, the bandwidths of the two branches, which are
exactly the same within the noninteracting spin-wave theory, are now indeed different, due
to the interactions. The gap1 = J is replaced by1 = (1− 202)J ' 1.676J , which
is much closer to the exact value of 1.759J . The ground-state energyEg is also refined:
Eclass+ E0 ' −1.437J , while Eclass+ E0 + E1 ' −1.459J , where the exact value is
−1.454J .
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Figure 4. Dispersion relations of the lowest-energy states in the subspacesM = N/2∓ 1. The
noninteracting spin-wave result (dotted lines) and an improved calculation taking into account
interactions between spin waves (solid lines). Previous numerical calculations [14] are also
shown for the sake of comparison. Here we plot the excitation energyE(k) taking the ground-
state energy and twice the lattice constant as zero and unity, respectively.

3.2. Thermodynamics

Now let us start our MSW theory from the above-obtained improved dispersion relations.
At finite temperatures we replaceα†kαk andβ†kβk in the spin-wave Hamiltonian by

ñ±k ≡
∑
n−,n+

n±Pk(n−, n+)

wherePk(n−, n+) is the probability ofn− ferromagnetic andn+ antiferromagnetic spin
waves appearing in thek-momentum state and satisfies∑

n−,n+
Pk(n

−, n+) = 1 (26)

for all values ofk. Then the free energy at zero field is given by

F = Eg+
∑
k

(ñ−k ω
−
k + ñ+k ω+k )+ kBT

∑
k

∑
n−,n+

Pk(n
−, n+) lnPk(n

−, n+). (27)

We now carry out the minimization of the free energy (27) with respect to thePk(n
−, n+)

under a particular constraint as well as the trivial constraint (26). The original idea
introduced by Takahashi [45, 46] was that the zero-field magnetization should be zero.
This constraint works quite well, especially for ferromagnets, where it serves to control
the number of Holstein–Primakoff bosons. Let us apply the same constraint to the present
model:

〈Sz + sz〉 = (S − s)N −
∑
k

∑
σ=±

σ ñ−σk = 0 (28)

where

Sz =
∑
j

Szj and sz =
∑
j

szj .
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Equation (28) indicates that the thermal fluctuation∑
k

∑
σ

σ ñ−σk

should be constrained to take the value of theclassicalmagnetization,(S − s)N . The free
energy and the magnetic susceptibility at thermal equilibrium are then given by

F = Eg+ µ(S − s)N − kBT
∑
k

∑
σ=±

ln(1+ ñσk ) (29)

χ = (gµB)
2

3kBT

∑
k

∑
σ=±

ñσk (1+ ñσk ) (30)

with

ñ±k =
1

e(J ω̃
±
k ±µ)/kBT − 1

(31)

whereµ is a Lagrange multiplier due to the condition (28). The susceptibility has been
obtained by calculatingχ = (gµB)

2(〈M2〉− 〈M〉2)/3NT [45]. Equations (29) and (30) are
expanded in powers ofT 1/2 at low temperatures as

C

NkB
= 3

4

(
S − s
Ss

)1/2 ζ( 3
2)√

2π
t̃ 1/2− 1

Ss
t̃

+ 15

32(S − s)1/2(Ss)3/2
[
(S2+ Ss + s2)ζ( 5

2)√
2π

− 4ζ( 1
2)√

2π

]
t̃ 3/2+O(t̃ 2) (32)

χJ

N(gµB)2
= Ss(S − s)2

3
t̃ −2− (Ss)1/2(S − s)3/2 ζ(

1
2)√

2π
t̃ −3/2

+ (S − s)
[
ζ( 1

2)√
2π

]2

t̃ −1+O(t̃ −1/2) (33)

whereζ(z) is Riemann’s zeta function and

t̃ = kBT̃ /J = kBT/Jγ with γ = 1− 01(S + s)/Ss − 02/Ss.

Surprisingly, the low-temperature series expansions (32) and (33) are exactly the same as the
thermodynamic Bethe-ansatzcalculations for the spin-1/2 ferromagnet [41] except forγ .
Thus we recognize similarities between ferrimagnets and ferromagnets at low temperatures.
We note, however, that ferrimagnets withS = 2s should not strictly be identified with
spin-s ferromagnets because of the scaling factorγ . With the interactions, the original
temperatureT is replaced byT̃ (>T ) or equivalently the original spins are reduced.
Therefore, ferrimagnets withS = 2s behave like spin-̃s (<s) ferromagnets, at least at
low temperatures, which reminds us of the quantum spin reduction [12] in ferrimagnets.
The spin-wave theory shows that the staggered magnetization is reduced to

(S + s)N − 2τ with 2τ =
∑
k

[(S + s)/sωk − 1].

Unfortunately, in the present model, the constraint introduced above is not useful at all
at high temperatures, because it allows the number of bosons of each mode to diverge. In
fact, under the condition of zero magnetization, the specific heat becomes a monotonically
increasing function. Hence we propose an alternative constraint [17]. Let us consider the
minimization of the free energy constraining thestaggered magnetizationto be zero:

〈:Sz − sz:〉 = (S + s)N − (S + s)
∑
k

∑
σ=±

ñσk

ωk
= 0 (34)
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Figure 5. The temperature dependence of the specific heat per unit cell: the MSW calculation
with noninteracting spin waves (dotted lines) and that with the improved dispersion relations
(solid lines). The numerical findings (QMC (©) and DMRG (×)) are also shown.

where the normal ordering is taken with respect to both operatorsα andβ. Equation (34)
implies, just as equation (28) does, that the thermal fluctuation

(S + s)
∑
k

∑
σ

ñσk /ωk

should take theclassicalvalue,(S+s)N , rather than the renormalized value,(S+s)N−2τ .
We note that, on the basis of the naive idea of zero staggered magnetization without the
normal ordering, we have

〈Sz − sz〉 = (S + s)N − 2τ − (S + s)
∑
k

∑
σ=±

ñσk

ωk
= 0. (35)

Besides such a phenomenological argument, a more stringent reason drives us to adopt
equation (34): condition (34) exactly reproduces the low-temperature series expansions
(32) and (33), whereas condition (35) fails to do this. The conventional spin-wave theory at
least leads to the correct leading term of the specific heat, which is obviously reproduced by
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the MSW theory with the constraint of zero magnetization. The low-temperature behaviour
must be inherent in the dispersion relation and should not be influenced by supplementary
constraints. Now the set of self-consistent equations (29) and (30) is replaced by

F = Eg+ µ(S + s)N − kBT
∑
k

∑
σ=±

ln(1+ ñσk ) (36)

χ = (gµB)
2

3kBT

∑
k

∑
σ=±

ñσk (1+ ñσk ) (37)

with

ñ±k =
1

e[J ω̃±k −µ(S+s)/ωk ]/kBT − 1
(38)

whereµ is a Lagrange multiplier due to the condition (34).

Figure 6. The temperature dependence of the magnetic susceptibility multiplied by the
temperature per unit cell: the MSW calculation with noninteracting spin waves (dotted lines)
and that with the improved dispersion relations (solid lines). The numerical findings (QMC (©)
and DMRG (×)) are also shown.

In the case where(S, s) = (1, 1/2), we have obtained (36) and (37) numerically in
the thermodynamic limit, and we illustrate them in figure 5 and figure 6, where the solid
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curves represent the calculations starting from the improved dispersion relationsω̃±k , while
the dashed curves represent the calculations withω±k [17] instead ofω̃±k . Though the present
calculation including the O(S0) interactions underestimates the height of the Schottky-like
peak, the interactions do correct the location of the peak, which emphasizes that the gapped
antiferromagnetic spin-wave mode makes the predominant contribution to this peak. We
would like to attribute the unsolved discrepancy to the constraint rather than to the dispersion
relations. Even though we adopt the two constraints (28) and (34) simultaneously, the results
do not change significantly. This is not so surprising, because the two constraints play almost
the same role at low temperatures, as the low-temperature series expansions imply, whereas
only the constraint (34) is relevant at high temperatures. The precise description of the
overall temperature dependence might be obtained with a temperature-dependent constraint,
which is not so interesting.

We obtain the best results from the MSW theory at low temperatures. Figure 6(b) fully
convinces us of the validity of the present MSW calculation. Figure 5(b) clearly reveals
the low-temperature behaviour which no numerical tool has succeeded in doing. Takahashi
compared his MSW findings [46] for ferromagnets with the spin-1/2 thermodynamic Bethe-
ansatzcalculations [41], and found that the MSW theory correctly describes the leading
two terms of the specific heat and the leading three terms of the susceptibility in its low-
temperature series expansions. We also find that the low-temperature series expansions (32)
and (33) coincide with those for the spin-1/2 ferromagnet to the same extent, except for the
scaling factorγ . This may be why the MSW and numerical findings for the susceptibility
are closer at higher temperatures than those for the specific heat.

4. Summary

Developing an analytic argument as well as employing various numerical tools, we have
investigated the thermodynamic properties of Heisenberg ferrimagnetic spin chains. Both
ferromagnetic and antiferromagnetic aspects are contained in the model; they are most
clearly exhibited at low and intermediate temperatures, respectively. One might say that
mixed-spin chains possess mixed features. We have shown that the MSW theory, starting
from the improved dispersion relations, precisely describes the low-temperature behaviour
of the model. We appeal to experimentalists to carry out specific heat and susceptibility
measurements of mixed-spin materials, especially at low temperatures. On the other
hand, the Schottky-like peak of the specific heat and the minimum of the susceptibility–
temperature product, clearly reflecting the presence of the antiferromagnetic gap, imply that
the antiferromagnetic excitations are not smeared out in the ferromagnetic spectra, but stand
out clearly. Hence neutron scattering measurements are also encouraged.
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